

Management von Prozessen

Qualitätssicherung von Prozessmodellen

Dr. Wilfried Lyhs

Gliederung

Allgemeiner Überblick: Übertragung von Metriken aus der SW-Entwicklung

Anforderungen an ein Qualitätsmodell

GQM-Ansatz: Schritte 1-6

Zusammenfassung

Allgemeiner Überblick

Da Prozessmodelle zunehmend eingesetzt werden, um Vorgänge in Unternehmen transparent zu machen und einer Optimierung zuzuführen, ist die Frage, wie die Qualität dieser Modelle erfasst werden kann, von zunehmender Bedeutung.

Nachstehend soll daher das Vorgehen bei der Qualitätssicherung von Prozessmodellen beschrieben werden.

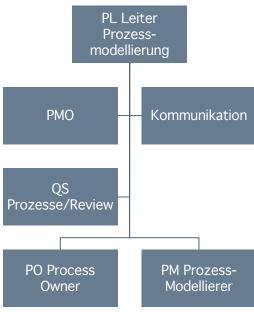
Prozessmodelle sind grafisch und *semiformal*, d.h. bestehen aus Elementen der Modellierungssprache (formaler Aspekt) verknüpft mit der Fachsprache (natürlichsprachlicher Aspekt) und stellen i.d.R. eine zeitlich-sachlogische Abfolge dar.

Um die Qualität von Prozessmodellen beurteilen zu können, braucht es

- ein Qualitätsmodell zur Beurteilung,
- Kenngrößen zur Messung der Qualitätsmerkmale, die sich dann intersubjektiv quantifizieren lassen,
- Verfahren und Werkzeuge zur Ermittlung der Kenngrößen bei EPKs (ereignisgesteuerten Prozessketten) oder eEPKS (erweiterte EPKs)

Allgemeiner Überblick

Bei einem Projekt mit dem Ziel, Unternehmensprozesse zu modellieren, wird man von folgende Rollen vorfinden:


- PL Projektleiter Prozessmodellierung: verantwortlich für Budget, Scope und Zeitrahmen
- PMO Project Management Office: Unterstützung des PL in Fragen der Projektabwicklung
- Kommunikation: verantwortlich für die bi-direktionale Kommunikation zwischen Projekt und Unternehmen, Verbesserung der Akzeptanz der Prozesse, Kommunikation von Änderungswünschen

• PO Process Owner: die Mitarbeiter des Unternehmens, die für die Richtigkeit einzelner ggf.

abteilungsübergreifender Prozesse verantwortlich sind

 PM Modellierer: Personen, die zusammen mit den POs Ist-Prozesse erfassen und Soll-Prozesse entwerfen

 QS Qualitätssicherung der Prozesse: verantwortlich für die Einhaltung der Konventionen und Optimierung der Metriken. Frühes QS reduziert die Qualitätskosten des Projektes!

Ubertragung von Metriken aus der Softwareentwicklung

Prozessmodelle haben eine gewisse Ähnlichkeit mit Software (zeitliche Abfolge von Aktivi-täten, die durch Entscheidungen beeinflusst wird), sodass die bekannten Metriken aus der Qualitätssicherung von Software übertragen werden können.

Software	Prozessmodelle	Bemerkung
Size: LOC Lines of Code	Prozessumfang: Anzahl der Aktivitäten (s.u. auch M14), Berechnungsmethode nachstehend	Berücksichtigt nicht die Struktur des Modells
MCCC McCabe's Zyklomatische Komplexität	CFC Control Flow Complexity 1-10: einfach; 11-20: wenig komplex 21-50: komplex, >50: untestbar	Berücksichtigt die Struktur, Berechnung von CFC auf der nächsten Folie
Coupling: Bindung zwischen verschiedenen Modulen	Anzahl der Verbindungen eines Moduls zu anderen (s.u. (*) oder M17)	Wenn hoch, dann mehr Designfehler
Cohesion: Zusammenhang innerhalb eines Moduls	Mittelwert der Anzahl der Verbindungen der Aktivitäten innerhalb eines Prozesses (*)	Wenn niedrig, dann mehr Designfehler
Modularity	s.u. M05, M06 und M07	Wenn niedrig, dann mehr Fehler
Maximum Nesting Depth, Verschachtelungstiefe	MND: Anzahl der Entscheidungen, die getroffen werden müssen, um den Pfad zu durchlaufen (s.u. M08)	>5 kritisch, Entscheidungen sind schlecht nachvollziehbar

^(*) Vanderfeesten, I. et al: Quality Metrics for Business Process Models, 2007, Proc. of the CAiSE forum, Band 247

Berechnung von Metriken

Berechnung von CFC:

- AND-Split: erhöht die CFC um 1, da alle Wege ausgeführt werden müssen
- XOR-Split: n Wege erhöhen CFC um n
- OR-Split: bei n Wegen gibt es 2ⁿ-1 mögliche Prozessverläufe, CFC wird daher um 2ⁿ-1 erhöht

Die manuelle Berechnung von Metriken ist zeitaufwendig und fehlerträchtig, weshalb ihre automatische Bestimmung vorzuziehen ist.

Da ARIS selber keine Metriken zur QS zur Verfügung stellt und Third-Party-Produkte nicht unbedingt ARIS-Datenbanken lesen können, ist folgender Weg einzuschlagen:

- Export der ARIS-Prozesse in AML (ARIS Markup Language)
- Konvertierung von AML in EPML (*Enterprise Process Markup Language*, standardisiertes XML-Derivat) mit verfügbaren Tools wie **XSLT** ODER BPM-X als Übersetzersoftware
- Auswertung der Prozesse mit Tools wie
 - BPM-X
 - ProM (<u>www.promtools.org</u>), eignet sich auch zur Analyse von Prozess-Logs
 - pModeler (JKU Linz, Recherche läuft)
 - EPC-Analysis (JKU Linz, Recherche läuft)

Gliederung

Allgemeiner Überblick: Übertragung von Metriken aus der SW-Entwicklung

Anforderungen an ein Qualitätsmodell

GQM-Ansatz: Schritte 1-6

Zusammenfassung

Anforderungen an ein Qualitätsmodell

Ein Meta-Qualitätsmodell für Prozesse sollte folgenden Kriterien genügen:

Adaptionsfähigkeit: zur Beurteilung von grafischen, ablauforientierten, semiformalen

Prozessmodellen geeignet

Objektivität: Ermittlung von Kennzahlen möglichst ohne Einfluss des Messenden

d.h. automatische Ermittlung

Operationalisierbarkeit: die Qualitätsmerkmale sind plan-, steuer- und messbar und unter

wirtschaftlichen Gesichtspunkten realisierbar

Sensitivität: eine Veränderung eines Merkmals führt zu einer Veränderung der

Kennzahl

Verständlichkeit: Oualitätsmerkmale und Kennzahlen sind verständlich beschrieben

Wirtschaftlichkeit: eine Messung der Kennzahlen ist mit günstigen Kosten-Nutzen-

Verhältnis möglich

Zuverlässigkeit: die Messungen sind reproduzierbar

Anforderungen an ein Qualitätsmodell

Bei den sog. *semiformalen* Prozessmodellen, die mit ARIS erstellt werden, besteht grundsätzlich das Problem der Messbarkeit der Modellinhalte. Beurteilung von Modellen im Sinne von *richtig* oder *falsch* sind intersubjektiv nicht möglich und weit entfernt davon, automatisch durchgeführt werden zu können.

Qualitätsbegriffe für die Prozessmodellierung können z. B. sein:

Richtigkeit / Korrektheit: Beurteilung ist u.U. von der beurteilenden Personengruppe abhängig

Vollständigkeit: u.U. nur bei Einschränkung auf ein Bezugssystem möglich

Minimalität: die Abgrenzung des zu modellierenden Umfangs ist i.d.R. nicht

eindeutig möglich

Verständlichkeit: die Benutzung einer einfachen und für Zielgruppe verständlichen

Sprache ist notwendig, das Vorhandensein weiterer Dokumente ist

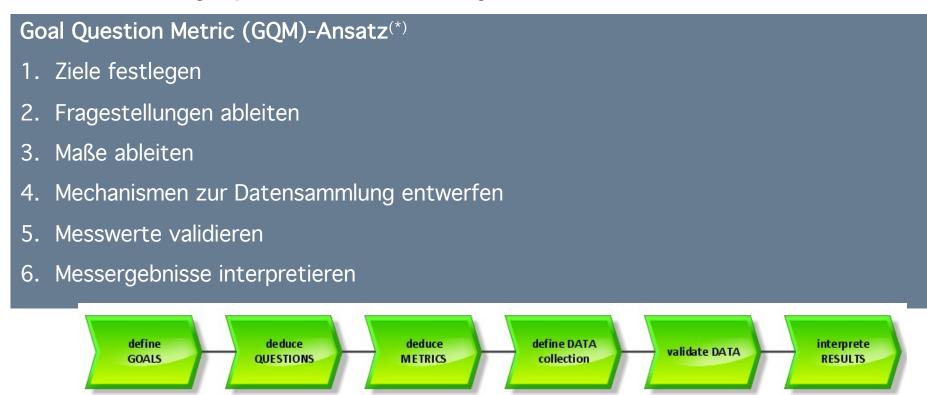
erforderlich: Glossar, Beschreibung der Modellierkonventionen

Lesbarkeit des Modells: - der Benutzer muss die Konventionen leicht verstehen können

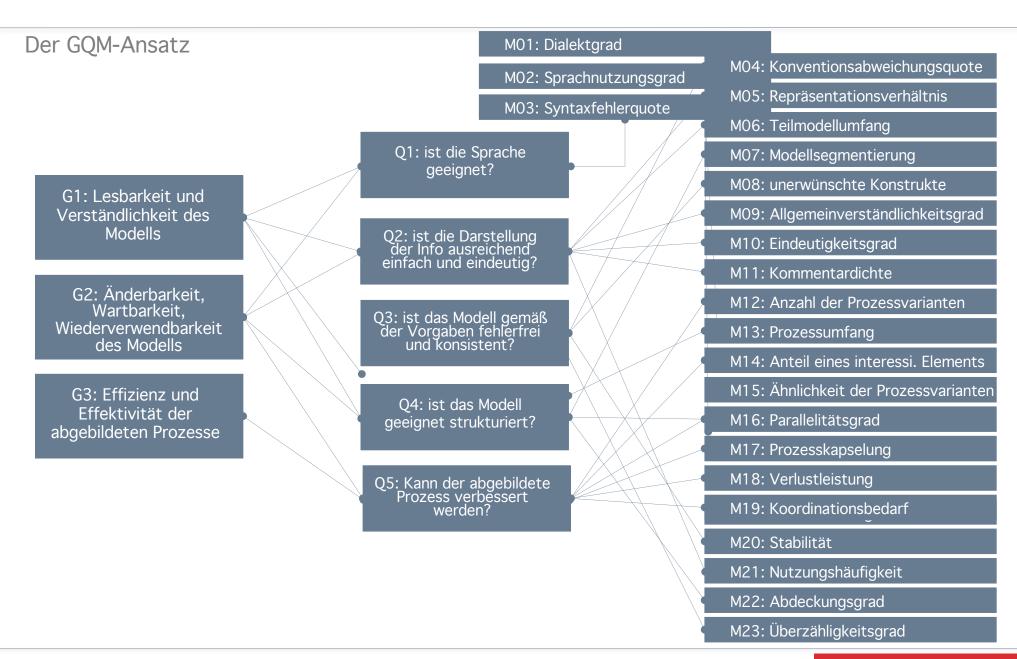
- das Tool muss eine "intuitive" Navigation durch die Prozesse und

deren Ebenen ermöglichen

Gliederung


Allgemeiner Überblick: Übertragung von Metriken aus der SW-Entwicklung
Anforderungen an ein Qualitätsmodell

GQM-Ansatz: Schritte 1-6


Zusammenfassung

Der GQM-Ansatz(*)

Der GQM-Ansatz beschreibt die Einführung von Qualitätssicherung von Prozessmodellen in sechs Schritten. Auch wenn die ab Schritt 3 aufgeführten Metriken teilweise akademischen Charakter haben, sei der methodische Ansatz hier präsentiert, da er in Abwandlung für die Qualitätssicherung in jedem Unternehmen eingesetzt werden kann.

(*) M. Kobler: Qualität von Prozessmodellen, Dissertation Uni Graz, Logos 2010

Goals/Ziele des Qualitätsmodells

Schritt 1: Für ein ablauforientiertes semiformales Prozessmodell werden exemplarisch folgende Ziele aufgestellt:

G1: Lesbarkeit und Verständlichkeit des Prozessmodells aus der Sicht der Modellnutzer

Es ist sicherzustellen, dass die semiformalen Modelle richtig verstanden werden, der Aufwand hierfür gering genug ist, dass die Modelle akzeptiert und genutzt werden.

- G2: Anderbarkeit, Wartbarkeit und Wiederverwendbarkeit des Prozessmodells aus Sicht der Modellverwalter Prozessmodelle müssen regelmäßig geändert und angepasst werden. Der Aufwand hierfür sollte möglichst gering sein.
- G3: Effizienz und Effektivität der abgebildeten Prozesse aus betriebswirtschaftlicher Sicht Die Modelle sollten derartig sein, dass trotz ihrer Abstraktion eine Beurteilung von Effizienz und Effektivität aus betriebswirtschaftlicher Sicht möglich ist.

G1: Lesbarkeit und Verständlichkeit des Modells

G2: Änderbarkeit, Wartbarkeit, Wiederverwendbarkeit des Modells

G3: Effizienz und Effektivität der abgebildeten Prozesse

Fragen zum Qualitätsmodell (1)

Schritt 2: Ausgehend von den Zielen können in Abstimmung mit den Fachabteilungen wiederum exemplarisch folgende Fragen zum einzuführenden QS-Modell abgeleitet werden:

Q1: Ist die gewählte Sprache geeignet? Ist Sprachadäquanz gegeben? Ist die Mächtigkeit der Werkzeuge zu hoch, sodass eine Einschränkung vorgenommen werden muss?

Q2: Ist die Darstellung der Informationen ausreichend einfach und eindeutig? Segmentierung der Inhalte (Prozesse), grafische Darstellung, Position und Bezeichnung der Modellelemente, Glossare (Ontologien)

Q3: Ist das Modell gemäß der Vorgaben fehlerfrei und konsistent?
Abhängigkeitsdefekte: z.B. parallele Aktivitäten, die abhängig sind
Architekturdefekte: z.B. Nutzung von Objekte der falschen Ebene
Deadlocks: Verklemmung von Prozessen mit Stillstand
Verklemmung mit Wechsel zwischen Zuständen

Tote Prozessteile: Teile werden im Workflow nicht erreicht

Überflüssige Elemente: Elemente, die definiert aber nicht genutzt werden Verweisfehler: Teile, die referenziert werden aber nicht definiert sind

Schleifen: falsche Abbruchbedingungen führen zu Schleifen

Durch Definition und Einhaltung der Modellkonventionen wird die Fehlerfreiheit und Konsistenz verbessert.

Q1: ist die Sprache geeignet?

Q2: ist die Darstellung der Info ausreichend einfach und eindeutig?

Q3: ist das Modell gemäß der Vorgaben fehlerfrei und konsistent?

Q4: ist das Modell geeignet strukturiert?

Q5: Kann der abgebildete Prozess verbessert werden?

Fragen zum Qualitätsmodell (2)

Q4: Ist das Modell geeignet strukturiert?

Bei der Strukturierung der Modelle konkurrieren oftmals Redundanzverzicht
(kompaktere Darstellung, geringere Anzahl von Elementen) mit Übersichtlichkeit, leichter Lesbarkeit und dem Versuch, Komplexität zu reduzieren.
Unerwünschte Redundanz: Beschreibung des gleichen Prozesses auf
unterschiedlichen Abstraktionsniveaus oder Perspektiven → erhöhter Pflege- und
Änderungsaufwand

- Q5: Kann der abgebildete Prozess aus einer spezifischen Sicht verbessert werden?
 - z.B. Variantenbildung (Individualisierung):
 - zu früh: vorhandene Synergieeffekte im Prozess werden nicht entdeckt
 - zu spät: Verlust der individuellen Prozesseigenschaften
 - z.B. Entscheidungen, die zum Abbruch des Prozesses führen:
 - möglichst wenig Aktivitäten zuvor, die sich als vergebens erweisen könnten

Anwendung allgemeiner Prinzipien des Prozessmanagements: sparsamer Einsatz von Ressourcen, Vermeidung von Systemwechsel, Vermeidung nicht wertschöpfender Aktivitäten, Beschleunigung durch Parallelisierung, Vermeidung von Wartezeiten bei der Zusammenführung von parallelen Prozessen ...

Q1: ist die Sprache geeignet?

Q2: ist die Darstellung der Info ausreichend einfach und eindeutig?

Q3: ist das Modell gemäß der Vorgaben fehlerfrei und konsistent?

Q4: ist das Modell geeignet strukturiert?

Q5: Kann der abgebildete Prozess verbessert werden?

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells: Metriken zu Q1

Nachstehend eine Auswahl von Metriken, die beim Aufsetzen einer Qualitätssicherung hilfreich sein können.

M01 Dialektgrad	
Voraussetzung	Die projektspezifische Sprache basiert auf einer Standardsprache
Beschreibung	Veränderung der Projektsprache in Bezug auf die Standardsprache
Messung	Anzahl der entfernten, geänderten und zusätzlichen Objekt-, Beziehungstypen, Regeln
Ğ	Anzahl der Objekt-, Beziehungstypen, Regeln

M02 Sprachnutzungsgrad	
Voraussetzung	Die projektspezifische Sprache basiert auf einer Standardsprache
Beschreibung	Veränderung der Projektsprache in Bezug auf die Standardsprache
Messung	Anzahl der genutzten Objekt-, Beziehungstypen
	Anzahl der Objekt-, Beziehungstypen der Sprache

M03 Syntaxfehlerquote	
Voraussetzung	Für die verwendete Sprache existiert ein definiertes Regelwerk und die Verstöße erfolgen nicht systematisch z.B. durch Konventionen
Beschreibung	Veränderung der Projektsprache in Bezug auf die Standardsprache
Messung	Anzahl der Syntaxfehler Umfang des Messobjektes

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M04 Konventionenabweichungsquote	
Voraussetzung	Die Konventionen liegen explizit vor und sind widerspruchs- und redundanzfrei
Beschreibung	Abweichungen von den vorgegebenen Konventionen
Messung	Anzahl der abweichungen von den Konventionen Umfang des Messobjektes

M05 Repräsentationsverhältnis	
Voraussetzung	Das Prozessmodell ist in Abstraktionsebenen gegliedert und die Gliederung wird auch zur Navigation im Modell verwendet
Beschreibung	Anzahl der Objekte auf einer Abstraktionsebene, die durch ein Objekt auf der übergeordneten Abstraktionsebene repräsentiert werden
Messung	Anzahl der Objekte auf Abstraktionsebene n Anzahl der Objekte auf Abstraktionsebene n-1

M06 Teilmodellumfang	
Voraussetzung	Das Prozessmodell ist in Teilmodelle gegliedert und deren Umfang ist annähernd gleich
Beschreibung	Durchschnittlicher Umfang der Teilmodelle auf einer Abstraktionsebene
Messung	Anzahl der Objekte einer spezifischen Abstraktionsebene Anzahl der Teilmodelle einer spez. Abstraktionsebene

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M07 Modellsegmentierung	
Voraussetzung	Die Modelle sind auf einer Abstraktionsebene in Teilmodelle segmentiert
Beschreibung	Durchschnittliche Anzahl an Prozessschnittstellen in den Teilmodellen
Messung	Anzahl der Schnittstellen einer spez. Abstraktionsebene
Ŭ	Anzahl der Teilmodelle einer spez. Abstraktionsebene

M08 unerwünschte Konstrukte	
Voraussetzung	Es existieren definierte unerwünschte Konstrukte (z.B. hohe Verschachtelungstiefe)
Beschreibung	Anzahl der unerwünschten Konstrukte in Bezug auf die Anzahl der Teilmodelle
Messung	Anzahl der unerwünschten Konstrukte Anzahl der Teilmodelle

M09 Allgemeinverständlichkeitsgrad	
Voraussetzung	Die Bezeichner enthalten keine Schreibfehler und ein allgemeines Vokabular ist verfügbar
Beschreibung	Anteil der Abkürzungen und Fachbegriffe, die nicht zur Umgangssprache zählen
Messung	Anzahl der nicht im allgemeinen Vokabular enthaltenen Wörter Gesamtzahl der Wörter

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M10 Eindeutigkeitsgrad	
Voraussetzung	Die Bezeichner enthalten keine Schreibfehler und eine Liste von Synonymen ist verfügbar
Beschreibung	Anteil der potentiell synonym interpretierbaren Wörter
Messung	Anzahl der Wörter, deren Synonyme ebenfalls im Modell verwendet werden
	Gesamtzahl der Wörter
M11 Kommentardichte	
Voraussetzung	Es existiert eine zusätzliche, erklärende Dokumentation zum Prozessmodell
Beschreibung	Umfang der zusätzlichen Dokumentation zu den Elementen eines Modells
Messung	Umfang an zusätzlicher Dokumentation
	Enzahl der Elemente

M12 Anzahl der Prozessvarianten	
Voraussetzung	Mehrere Prozessvarianten (erfolgreiche, nicht abbrechende) bilden ein Prozessmodell
Beschreibung	Anzahl der unterscheidbaren, erfolgreichen Prozessvarianten (*)
Messung	Messung der Prozessvarianten

(*) Es ist das Ziel, die Anzahl der Varianten zu reduzieren

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M13 Prozessumfang	
Voraussetzung	Die Eigenschaften der abgebildeten Aktivitäten sind ausreichend ähnlich
Beschreibung	Durchschnittliche Anzahl von Aktivitäten, aus denen eine Prozessvariante besteht
Messung	Anzahl der Aktivitäten der Prozessvariante v _i Anzahl der Prozessvarianten

M14 Ähnlichkeit eines interessierenden Elements

Voraussetzung	Die Prozessvarianten treten ausreichend regelmäßig auf
Beschreibung	Anteil eines interessierenden Elements an den möglichen Prozessvarianten
Messung	$\sum_{v=1}^{V} \left(\frac{\text{Anzahl der interessierenden Elemente in Prozessvariante } v_i}{\text{Anzahl der Elemente der Prozessvariante } v_i} \right) * \frac{1}{V}$

M15 Ähnlichkeit der Prozessvarianten

Voraussetzung	Die Prozessvarianten sind unabhängig von der Reihenfolge der Elemente definiert
Beschreibung	Ähnlichkeit der durch das Prozessmodell repräsentierten, unterscheidbaren Prozessvarianten
Messung	Ähnlichkeitsmaß der Prozessvarianten, z.B. Jaccard-Ähnlichkeitskoeffizient $J(v_1, v_2, v_n) = \frac{\left v_1 \bigcap v_2 \bigcap v_3 \bigcap v_n\right }{\left v_1 \bigcup v_2 \bigcup v_3 \bigcup v_n\right }$

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M16 Parallelitätsgrad							
Voraussetzung	Die Durchlaufzeiten der abgebildeten Aktivitäten ist ausreichend ähnlich						
Beschreibung	Durchschnittlicher Anteil der zum längsten Pfad parallel ablaufenden Aktivitäten innerhalb der Prozessvarianten						
Messung	$\sum_{i=1}^{V} (1 - \frac{\text{Länge der Prozess variante } \mathbf{v}_{i}}{\text{Umfang der Prozess variante } \mathbf{v}_{i}}) * \frac{1}{V}$	Länge: längster Pfad, größte Anzahl von Elementen Umfang: Anzahl von Elementen in der Variante					

M17 Prozesskapselung	
Voraussetzung	Der Prozess ist nicht durch gemeinsam genutzte Ressourcen von anderen Prozessen abhängig, Input- und Output-Objekte sind konsistent bezeichnet
Beschreibung	Anteil der Input-Objekte, die nicht innerhalb des Prozesses erstellt wurden, d.h. die nicht Output der gleichen Prozessvarianten sind
Messung	$\sum_{v=1}^{V} \frac{\text{Input-Objekte ¬ Output-Objekte der Prozessvariante v}_{i}}{\text{Anzahl der Input-Objekte der Prozessvariante v}_{i}} \cdot \frac{1}{V}$

M18 Verlustleistung	
Voraussetzung	Input- und Output-Objekte sind konsistent bezeichnet
Beschreibung	Anzahl der Output-Objekte, die keine Inputobjekte innerhalb des Prozesses sind
Messung	$\sum_{v=1}^{V} \frac{\text{Output-Objekte } - \text{Intput-Objekte } \text{der Prozessvariante } \mathbf{v}_{i}}{\text{Anzahl } \text{der Input-Objekte } \text{der Prozessvariante } \mathbf{v}_{i}} \cdot \frac{1}{V}$

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M19 Koordinationsbedarf							
Voraussetzung	Die betrachteten Systeme sind konsistent bezeichnet						
Beschreibung Anzahl von Systemwechsel eines bestimmten Typs							
Messung	$\frac{\sum_{v=1}^{V} \text{Anzahl der Systemwechsel der Prozessvariante v}_{i}}{\text{Anzahl der Übergänge je Prozessvarianten}}$						

M20 Stabilität	
Voraussetzung	Es erfolgt eine Versionierung der Modelle
Beschreibung	Umfang der Veränderung des Modells bezogen auf den betrachteten Zeitraum
Messung	Anzahl der Änderungen auf einer Abstraktionsebene * Zeit Anzahl der Modellelemente auf einer Abstraktionsebene

M21 Nutzungshäufigkeit					
Voraussetzung	Der Zugriff auf die Modelle wird erfasst				
Beschreibung	Bestimmung der Zugriffshäufigkeit auf Modelle bzw. Modellteile				
Messung	Anzahl der Zugriffe auf einen Modellteil Zeit				

Schritt 3: Metriken / Kennzahlen des Qualitätsmodells

M22 Abdeckungsgrad	
Voraussetzung	Das Modell wird nicht unmittelbar für die Ausführung der Prozesse herangezogen und es stehen Daten zur Prozessausführung zur Verfügung
Beschreibung	Anzahl der Prozessinstanzen auf der jeweiligen Abstraktionsebene, die durch das Modell abgedeckt werden
Messung	Anzahl der abgebildeten Prozessvarianten Anzahl der aufgetretenen Prozessvarianten Anzahl der aufgetretenen Prozessvarianten

M23 Überzähligkeitsgrad					
Voraussetzung	Es stehen Daten zur Prozessausführung zur Verfügung				
Beschreibung	Anzahl der Modellteile auf der jeweiligen Abstraktionsebene, die in der Diskurswelt nicht auftreten				
Messung	Anzahl der abgebildeten Prozessvarianten Anzahl der aufgetretenen Prozessvarianten Anzahl der im Modell abgebildeten Prozessvarianten				

Weitere Metriken analog zu SW-Metriken: siehe oben Abschnitt 1

Schritt 4 des GQM-Ansatzes: Mechanismen zur Datensammlung entwerfen

Manuelle Analyse und Dokumentation in Excel-Listen

Konv 01	Konv 02	Konv 12	Konv 04	Konv 05	Konv 06	Konv 11	Konv 07	Konv 08	Konv 09	Konv 10
Richtung	Obj ohne Kanten	prägnante Namen	auslös. Ereignisse	abschl. Ereignisse	Prozess-SS1	Organigramm	Entscheidung1	XOR	Entscheidung2	Prozess-SS2
horizontal	NIO	10	10	10	10	geringe Mängel	10	10	10	10
horiz Swim Lane	NIO	10	10	10	10	10	10	10	10	10
vertikal	10	10	10	10	10	10	10	10	10	10
verti Swim Lane	10	10	10	10	10	10	10	10	10	10
N.A.	10	10	10	10	10	10	10	10	10	10

		Ereignisse		Konjunktion			Adjunktion			Antivalenz			Konnektoren	Kanten	Zustände	
Knoten	Funktionen	gesamt	Startereignis innere Ereignisse	AND gesamt	AND Split	AND join	OR gesamt	OR Split	OR Join	gesamt	XOR Split	XOR Join			Start	Ende

Automatische Analyse durch Werkzeuge:

- BPM-X
- pModeler (JKU Linz, Recherche läuft)
- EPC-Analysis (JKU Linz, Recherche läuft)

Schritt 5 GQM: Messwerte validieren

Bei manuell erfassten oder zu erfassenden Metriken wird ein Reviewer einzelne Metriken berechnen, die der Modellierer nicht erfassen kann (sh. Tabelle) und stichprobenartig die Metriken überprüfen, die der Modellierer ermittelt hat.

Metrik	Bemerkung					
M03 Syntaxfehlerquote	Wird bei Review vom Reviewer ermittel, eine autom. Berechnung ist i.d.R. nicht möglich.					
M04 Konventions- abweichungsquote	Wird beim Review vom Reviewer auf der Basis der vereinbarten Modellierkonventionen berechnet.					
M05 Repräsentations- verhältnis	Wird vom Modellierer für seinen Prozess erstellt bzw. der Modellierer liefert Anzahl der Objekte.					
M07 Modellsegmentierung	Eine große Anzahl von Schnittstellen zu anderen Prozessen birgt die Gefahr der Deadlocks/Livelocks in sich. Zu viele Schnittstellen erschweren außerdem das Verstehen des Gesamtprozesses. Ziel: möglichst wenige Schnittstellen					
M08 unerwünschte Konstrukte	Der Reviewer wird diese Konstrukte identifizieren, das sie u.U. formal richtig und konventionsgemäß sind aber z.B. das Verständlichkeit des Modells erschweren (zu hohe Schachtelungstiefe)					
M09 Allgemein- verständlichkeitsgrad	Der Reviewer muss die Wahl der Abkürzungen und Fachbegriffe überprüfen. Sprachmischungen wie z.B. "Denglisch" sind zu vermeiden					
M10 Eindeutigkeitsgrad	Überprüfung durch den Modellierer: ARIS bietet die Möglichkeit, die erstellten Objekte auf ihre Eindeutigkeit hin zu überprüfen und ggf. als Instanzen des gleichen Objektes zu re-definieren.					
M11 Kommentardichte	ARIS bietet die Möglichkeit, den Objekten Kommentare zuzuordnen. Der Projektleiter des BPM-Projektes entscheidet, ob die Kommentare am Objekt in ARIS und/oder in einem separaten Dokument geführt werden.					

Schritt 5 GQM: Messwerte validieren

Metrik	Bemerkung					
M12 Anzahl von Prozessvarianten	Liegen Varianten vor, dann ist zu überprüfen, ob sich diese abgesehen von der Reihenfolge in mindestens einem Objekt unterscheiden und ob sie keine Verknüpfungen miteinander enthalten. Metrik wird vom Modellierer geliefert.					
M13 Prozessumfang M14 Ähnlichkeit der Prozessvarianten	Liefert der Modellierer.					
M16 Parallelitätsgrad	Der Reviewer überprüft, ob bei Vorhandensein von Laufzeiten der Einzelaktivitäten die Prozessvariant etwa gleiche Laufzeiten haben. Der längste Pfad bestimmt i.d.R. die minimale Gesamtlaufzeit, die wiederum die Effektivität der Parallelisierung beeinflusst.					
M17 Prozess- kapselung M18 Verlustleistung	Liefert der Modellierer. Die Anzahl der Input-Projekte aus anderen Prozessen stellt eine nicht kontrollierte Abhängigkeit von der Umwelt des Prozesses dar. Der Projektleiter entscheidet, ob die Abhängigkeit von Ressourcen (Daten oder Personen) toleriert werden kann.					
M20 Stabilität	Modellierer oder autom. Erfassung: Die hohe Änderungsrate von Prozessen deutet darauf hin, dass die Inhalte und deren Darstellung nicht vollständig geklärt sind und noch keinen stabilen Status erreicht haben.					
M22 Abdeckungsgrad	Der Reviewer ermittelt zusammen mit dem Projektleiter den Abdeckungsgrad der Modelle.					
CFC Control Flow Compexity	Liefert der Modellierer nach der Berechnungsvorgabe bzw. sollte von einem Werkzeug automatisch ermittelt werden.					
MND Maximum Nesting Depth	Verschachtelungstiefe: Liefert der Modellierer bzw. sollte von einem Werkzeug automatisch ermittelt werden.					

Schritt 6 GQM: Messergebnisse interpretieren

Die Metriken zur Sprachnutzung M01-03 sind durch ein Review mit dem Modellierer einfach zu optimieren. M09 kann durch Verwendung von Synonymen oder die Aufnahme der Begriffe ins Glossar auf den Wert Null gebracht werden.

Da die Modellierkonventionen unbedingt wg. der Konsistenz einzuhalten sind, können M04 aber auch M08 einfach durch den Modellierer selbst auf Null gebracht werden.

Schwieriger ist die Entscheidung bei M05-07: die Aufteilung der Prozesse auf Abstraktionsebenen ist teilweise eine Geschmacksfrage und hängt auch von der fachlichen Perspektive ab, unter dem das Modell betrachtet wird. Es ist eine Segmentierung zu finden, die dem obersten Ziel, der Lesbarkeit des Modells, für alle gerecht wird.

Die Metriken CFC und MND geben Hinweise darauf, welche Prozessteile im Hinblick auf Komplexität und Verstehbarkeit problematisch sein könnten. Ein hoher M17-Wert liefert zusätzliche Informationen hinsichtlich unerwünschter Kopplung mit anderen Prozessen.

Derart identifizierte Teilmodelle sind vom Reviewer bevorzugt zu betrachten und gemeinsam mit dem Projektleiter ist festzustellen, ob durch ein Re-Design der Darstellung die Metriken verbessert werden können.

Sollten allerdings die Prozesse selbst derartig komplex sein, ist mit den Process Ownern die Diskussion zu suchen, wie die Prozesse verändert werden können, um zu besseren Metrik-Werten zu gelangen.

Gliederung

Allgemeiner Überblick: Übertragung von Metriken aus der SW-Entwicklung

Anforderungen an ein Qualitätsmodell

GQM-Ansatz: Schritte 1-6

Zusammenfassung

Zusammenfassung

- Der Reviewer in einem Prozessmodellierungsprojekt hat die Aufgabe, die Lesbarkeit und Verständlichkeit der Prozesse sicherzustellen.
- Die Process Owner haben Richtigkeit und Vollständigkeit der Prozesse sicherzustellen.
- Es werden eine Reihe von Metriken vorgeschlagen, die zur Qualitätssicherung von Prozessmodellen verwendet werden können.
- Die GQM-Methode zeigt auf, wie methodisch eine Qualitätssicherung für Prozessmodelle aufgebaut werden kann.
 - Von der Definition der Ziele
 - über die Formulierung der Fragestellungen, die für die QS relevant sind,
 - hin zu den Metriken, mit denen die Qualität der Modelle erfasst werden sollen.
- Die Metriken sollten möglichst automatisch ermittelt werden, um Aufwand und Fehler zu reduzieren. Zu diesem Zweck sind wenige Tools auf dem Markt verfügbar.
- Problempunkte der Modellierung können anhand der Metriken ausgemacht werden.
- Ist der Prozess und nicht seine Darstellung das Problem, sollte mit den Process Ownern über ein Re-Design des Prozesses gesprochen werden.

Unsere Leistung

Hilderts & Partner unterstützt Unternehmen bei der Durchführung von Prozessmodellierungen von der Ist-Analyse bis zur Formulierung und Einführung von Soll-Prozessen.

Hilderts & Partner berät Sie gerne bei der Einführung von Qualitätssicherung für Ihre Prozessmodellierung.

Nutzen Sie die vielfältigen Prozesserfahrung unserer Berater in diversen Branchen, um Ihre Prozesse zu optimieren.

This document is solely for the use of dedicated client personnel. No part of it may be circulated, quoted, or reproduced for distribution outside the client organization without prior written approval from Dr-Lyhs-Consulting		